Telegram Group & Telegram Channel
Чи буває так, щоб розрахунок за «опором матеріалів» збігався з реальністю?
На перший погляд, таке питання звучить безглуздо. Якби опірмат не «працював», його б не змушували вчити кожного майбутнього «механічного» інженера у ВНЗ! Втім у людини, яка продивилася наші публікації, може скластися враження, що його основа - «балкова теорія» - частіше не дає правдоподібних результатів, ніж дає. Визнаємо, що дещо перегнули палицю у розвінчанні універсальності цієї базової дисципліни. Тому нарешті покажемо дослід, де застосування опору матеріалів дає чудовий збіг з реальністю, даною нам у відчуттях!

Практично у кожному пості, присвяченому зміні форми та розмірів деталей під навантаженням, ми звертаємо увагу читачів, що точно передбачити їхню поведінку за допомогою балкової теорії можна тільки, якщо:
⚙️ матеріал, з якого вони зроблені, деформується абсолютно пружно;
⚙️ найбільші переміщення частин деталі на порядок менші за її довжину.
Якщо ж хоча б одна з цих умов не виконується, то «теоретичне» передбачення як прогинів та кутів закручування, так й руйнівного навантаження буде дуже відрізнятися від того, що ми отримуємо на практиці. Причому, якщо руйнівне навантаження наші розрахунки майже завжди занижуватимуть (тобто даватимуть неврахований запас міцності), то справжні деформації деталей будуть набагато більшими від розрахункових, що вже зовсім недобре!
Ба більше, наші численні досліди над балками із пластику та алюмінію показали, що навіть матеріали, які мають подовження під час розриву лише 1-2% (тобто, на перший погляд, доволі крихкі), не можна вважати пружними, бо навіть вони дають дуже непропорційну залежність сила-прогин та, відповідно, вищу міцність, ніж розрахункова.
Виходить, що:
☑️ Не існує дійсно пружних матеріалів і це лише абстрактна модель?!
☑️ Опір матеріалів завжди буде занижувати реальну міцність та прогини?!

Щоб у цьому розібратися, наші слухачі вирішили зменшувати пластичність матеріалу, доки розрахунки деталей, зроблених із нього, не почнуть стикуватися з експериментами.
Оскільки ми ще не розвинули навчальний центр до термічної ділянки, яка дала б змогу по-різному загартовувати та відпускати леговані сплави, варіюючи ступінь їхньої пластичності, було обрано інший шлях. Він потребував хитрощів та елементарних знань механіки руйнування, але ж недарма у нас займаються найкваліфікованіші та наймотивованіші студенти Києва, а значить - й всієї України!
Після мозкового штурму було вирішено надрукувати балки на 3D принтері волокнами не вздовж (як зазвичай), а впоперек! Адже відомо, що міцність шаруватих матеріалів впоперек волокон набагато менша, ніж уздовж. Звичайно, для цього знадобилися технологічні виверти та чимало дослідів з переналаштуванням параметрів друку, проте підсумок повністю задовольнив наших дослідників. Виявилося, що так можна знизити залишкове подовження при розриві з 1-2% до 0.1%!

Який же результат вигину балок з настільки крихкого матеріалу?
Щоб дізнатися це, потрібно прогорнути наші фото до графіка «поперечна сила - максимальний прогин», який було отримано «нашими» допитливими студентами.
Видно, що тепер реальні прогини у 3-х випадках з 4-х влаштувалися на розрахунковій залежності та навіть у 4-му випадку максимальна відмінність не перевищує 25%. Що ж до міцності, то реальні руйнівні навантаження лежать ідеально в смузі розкиду експериментальних даних для розтягування зразків з такого матеріалу.

Що ж із цього випливає?
🎯 Якщо використовувати методи строго в окреслених для них межах припущень, то їх фізичні моделі чудово описують дійсність!
🎯 «Вчити фізику» - це зовсім не «зубрити формули», а розбиратися, з яких припущень їх було отримано, та вчитися бачити їх обмеження у реальному світі!

P.S. Невже опір матеріалів потрібен тільки для передбачення поведінки винятково крихких матеріалів, на кшталт білого чавуну або кераміки?
Звісно, ні! Однак пояснення цього моменту виходить за рамки сьогоднішньої теми та обсяг поста в соцмережах.
Чи знають відповідь наші читачі?
Пишіть ідеї у коментарях!



tg-me.com/progresstech/631
Create:
Last Update:

Чи буває так, щоб розрахунок за «опором матеріалів» збігався з реальністю?
На перший погляд, таке питання звучить безглуздо. Якби опірмат не «працював», його б не змушували вчити кожного майбутнього «механічного» інженера у ВНЗ! Втім у людини, яка продивилася наші публікації, може скластися враження, що його основа - «балкова теорія» - частіше не дає правдоподібних результатів, ніж дає. Визнаємо, що дещо перегнули палицю у розвінчанні універсальності цієї базової дисципліни. Тому нарешті покажемо дослід, де застосування опору матеріалів дає чудовий збіг з реальністю, даною нам у відчуттях!

Практично у кожному пості, присвяченому зміні форми та розмірів деталей під навантаженням, ми звертаємо увагу читачів, що точно передбачити їхню поведінку за допомогою балкової теорії можна тільки, якщо:
⚙️ матеріал, з якого вони зроблені, деформується абсолютно пружно;
⚙️ найбільші переміщення частин деталі на порядок менші за її довжину.
Якщо ж хоча б одна з цих умов не виконується, то «теоретичне» передбачення як прогинів та кутів закручування, так й руйнівного навантаження буде дуже відрізнятися від того, що ми отримуємо на практиці. Причому, якщо руйнівне навантаження наші розрахунки майже завжди занижуватимуть (тобто даватимуть неврахований запас міцності), то справжні деформації деталей будуть набагато більшими від розрахункових, що вже зовсім недобре!
Ба більше, наші численні досліди над балками із пластику та алюмінію показали, що навіть матеріали, які мають подовження під час розриву лише 1-2% (тобто, на перший погляд, доволі крихкі), не можна вважати пружними, бо навіть вони дають дуже непропорційну залежність сила-прогин та, відповідно, вищу міцність, ніж розрахункова.
Виходить, що:
☑️ Не існує дійсно пружних матеріалів і це лише абстрактна модель?!
☑️ Опір матеріалів завжди буде занижувати реальну міцність та прогини?!

Щоб у цьому розібратися, наші слухачі вирішили зменшувати пластичність матеріалу, доки розрахунки деталей, зроблених із нього, не почнуть стикуватися з експериментами.
Оскільки ми ще не розвинули навчальний центр до термічної ділянки, яка дала б змогу по-різному загартовувати та відпускати леговані сплави, варіюючи ступінь їхньої пластичності, було обрано інший шлях. Він потребував хитрощів та елементарних знань механіки руйнування, але ж недарма у нас займаються найкваліфікованіші та наймотивованіші студенти Києва, а значить - й всієї України!
Після мозкового штурму було вирішено надрукувати балки на 3D принтері волокнами не вздовж (як зазвичай), а впоперек! Адже відомо, що міцність шаруватих матеріалів впоперек волокон набагато менша, ніж уздовж. Звичайно, для цього знадобилися технологічні виверти та чимало дослідів з переналаштуванням параметрів друку, проте підсумок повністю задовольнив наших дослідників. Виявилося, що так можна знизити залишкове подовження при розриві з 1-2% до 0.1%!

Який же результат вигину балок з настільки крихкого матеріалу?
Щоб дізнатися це, потрібно прогорнути наші фото до графіка «поперечна сила - максимальний прогин», який було отримано «нашими» допитливими студентами.
Видно, що тепер реальні прогини у 3-х випадках з 4-х влаштувалися на розрахунковій залежності та навіть у 4-му випадку максимальна відмінність не перевищує 25%. Що ж до міцності, то реальні руйнівні навантаження лежать ідеально в смузі розкиду експериментальних даних для розтягування зразків з такого матеріалу.

Що ж із цього випливає?
🎯 Якщо використовувати методи строго в окреслених для них межах припущень, то їх фізичні моделі чудово описують дійсність!
🎯 «Вчити фізику» - це зовсім не «зубрити формули», а розбиратися, з яких припущень їх було отримано, та вчитися бачити їх обмеження у реальному світі!

P.S. Невже опір матеріалів потрібен тільки для передбачення поведінки винятково крихких матеріалів, на кшталт білого чавуну або кераміки?
Звісно, ні! Однак пояснення цього моменту виходить за рамки сьогоднішньої теми та обсяг поста в соцмережах.
Чи знають відповідь наші читачі?
Пишіть ідеї у коментарях!

BY Progresstech-Ukraine




Share with your friend now:
tg-me.com/progresstech/631

View MORE
Open in Telegram


Progresstech Ukraine Telegram | DID YOU KNOW?

Date: |

Telegram and Signal Havens for Right-Wing Extremists

Since the violent storming of Capitol Hill and subsequent ban of former U.S. President Donald Trump from Facebook and Twitter, the removal of Parler from Amazon’s servers, and the de-platforming of incendiary right-wing content, messaging services Telegram and Signal have seen a deluge of new users. In January alone, Telegram reported 90 million new accounts. Its founder, Pavel Durov, described this as “the largest digital migration in human history.” Signal reportedly doubled its user base to 40 million people and became the most downloaded app in 70 countries. The two services rely on encryption to protect the privacy of user communication, which has made them popular with protesters seeking to conceal their identities against repressive governments in places like Belarus, Hong Kong, and Iran. But the same encryption technology has also made them a favored communication tool for criminals and terrorist groups, including al Qaeda and the Islamic State.

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

Progresstech Ukraine from ua


Telegram Progresstech-Ukraine
FROM USA